\(\int \frac {\cos ^2(c+d x) (B \sec (c+d x)+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx\) [407]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (warning: unable to verify)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 42, antiderivative size = 207 \[ \int \frac {\cos ^2(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx=-\frac {(5 B-2 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{5/2} d}+\frac {(115 B-43 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {(B-C) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(15 B-7 C) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {(35 B-11 C) \sin (c+d x)}{16 a^2 d \sqrt {a+a \sec (c+d x)}} \]

[Out]

-(5*B-2*C)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(5/2)/d-1/4*(B-C)*sin(d*x+c)/d/(a+a*sec(d*x+c))
^(5/2)-1/16*(15*B-7*C)*sin(d*x+c)/a/d/(a+a*sec(d*x+c))^(3/2)+1/32*(115*B-43*C)*arctan(1/2*a^(1/2)*tan(d*x+c)*2
^(1/2)/(a+a*sec(d*x+c))^(1/2))/a^(5/2)/d*2^(1/2)+1/16*(35*B-11*C)*sin(d*x+c)/a^2/d/(a+a*sec(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.86 (sec) , antiderivative size = 207, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {4157, 4105, 4107, 4005, 3859, 209, 3880} \[ \int \frac {\cos ^2(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx=-\frac {(5 B-2 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{a^{5/2} d}+\frac {(115 B-43 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}+\frac {(35 B-11 C) \sin (c+d x)}{16 a^2 d \sqrt {a \sec (c+d x)+a}}-\frac {(15 B-7 C) \sin (c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}}-\frac {(B-C) \sin (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}} \]

[In]

Int[(Cos[c + d*x]^2*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

-(((5*B - 2*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(5/2)*d)) + ((115*B - 43*C)*ArcTan[
(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) - ((B - C)*Sin[c + d*x])/(4
*d*(a + a*Sec[c + d*x])^(5/2)) - ((15*B - 7*C)*Sin[c + d*x])/(16*a*d*(a + a*Sec[c + d*x])^(3/2)) + ((35*B - 11
*C)*Sin[c + d*x])/(16*a^2*d*Sqrt[a + a*Sec[c + d*x]])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3859

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(a + x^2), x], x, b*(C
ot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3880

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 4005

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c/a,
Int[Sqrt[a + b*Csc[e + f*x]], x], x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 4105

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(
2*m + 1))), x] - Dist[1/(a^2*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*B*n - a*A*
(2*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[
A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]

Rule 4107

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Dist[1
/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*B*n - A*b*(m + n + 1)*Csc[e + f*x
], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]

Rule 4157

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(
x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Dist[1/b^2, Int[(a + b*Csc[e + f*x])
^(m + 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rubi steps \begin{align*} \text {integral}& = \int \frac {\cos (c+d x) (B+C \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx \\ & = -\frac {(B-C) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac {\int \frac {\cos (c+d x) \left (a (5 B-C)-\frac {5}{2} a (B-C) \sec (c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx}{4 a^2} \\ & = -\frac {(B-C) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(15 B-7 C) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {\int \frac {\cos (c+d x) \left (\frac {1}{2} a^2 (35 B-11 C)-\frac {3}{4} a^2 (15 B-7 C) \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{8 a^4} \\ & = -\frac {(B-C) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(15 B-7 C) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {(35 B-11 C) \sin (c+d x)}{16 a^2 d \sqrt {a+a \sec (c+d x)}}+\frac {\int \frac {-4 a^3 (5 B-2 C)+\frac {1}{4} a^3 (35 B-11 C) \sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{8 a^5} \\ & = -\frac {(B-C) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(15 B-7 C) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {(35 B-11 C) \sin (c+d x)}{16 a^2 d \sqrt {a+a \sec (c+d x)}}+\frac {(115 B-43 C) \int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{32 a^2}-\frac {(5 B-2 C) \int \sqrt {a+a \sec (c+d x)} \, dx}{2 a^3} \\ & = -\frac {(B-C) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(15 B-7 C) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {(35 B-11 C) \sin (c+d x)}{16 a^2 d \sqrt {a+a \sec (c+d x)}}-\frac {(115 B-43 C) \text {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{16 a^2 d}+\frac {(5 B-2 C) \text {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^2 d} \\ & = -\frac {(5 B-2 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{5/2} d}+\frac {(115 B-43 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {(B-C) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(15 B-7 C) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {(35 B-11 C) \sin (c+d x)}{16 a^2 d \sqrt {a+a \sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 3.54 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.00 \[ \int \frac {\cos ^2(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {-128 (5 B-2 C) \text {arctanh}\left (\sqrt {1-\sec (c+d x)}\right ) \cos ^5\left (\frac {1}{2} (c+d x)\right ) \sec ^3(c+d x) \sin \left (\frac {1}{2} (c+d x)\right )+4 \sqrt {2} (115 B-43 C) \text {arctanh}\left (\frac {\sqrt {1-\sec (c+d x)}}{\sqrt {2}}\right ) \cos ^5\left (\frac {1}{2} (c+d x)\right ) \sec ^3(c+d x) \sin \left (\frac {1}{2} (c+d x)\right )+\sqrt {1-\sec (c+d x)} (55 B-15 C+(43 B-11 C+8 B \cos (2 (c+d x))) \sec (c+d x)) \tan (c+d x)}{16 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{5/2}} \]

[In]

Integrate[(Cos[c + d*x]^2*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(-128*(5*B - 2*C)*ArcTanh[Sqrt[1 - Sec[c + d*x]]]*Cos[(c + d*x)/2]^5*Sec[c + d*x]^3*Sin[(c + d*x)/2] + 4*Sqrt[
2]*(115*B - 43*C)*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]]*Cos[(c + d*x)/2]^5*Sec[c + d*x]^3*Sin[(c + d*x)/2] +
 Sqrt[1 - Sec[c + d*x]]*(55*B - 15*C + (43*B - 11*C + 8*B*Cos[2*(c + d*x)])*Sec[c + d*x])*Tan[c + d*x])/(16*d*
Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec[c + d*x]))^(5/2))

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(898\) vs. \(2(178)=356\).

Time = 2.10 (sec) , antiderivative size = 899, normalized size of antiderivative = 4.34

method result size
default \(\text {Expression too large to display}\) \(899\)

[In]

int(cos(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/32/a^3/d*(-2*a/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*(-2*B*(1-cos(d*x+c))^7*csc(d*x+c)^7+2*C*(1-cos(d*x+
c))^7*csc(d*x+c)^7+80*B*arctanh(2^(1/2)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(-cot(d*x+c)+csc(d*x+c)))*((1-
cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*2^(1/2)*(1-cos(d*x+c))^2*csc(d*x+c)^2+21*B*(1-cos(d*x+c))^5*csc(d*x+c)^5-3
2*C*arctanh(2^(1/2)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(-cot(d*x+c)+csc(d*x+c)))*((1-cos(d*x+c))^2*csc(d*
x+c)^2-1)^(1/2)*2^(1/2)*(1-cos(d*x+c))^2*csc(d*x+c)^2-13*C*(1-cos(d*x+c))^5*csc(d*x+c)^5-115*B*ln(csc(d*x+c)-c
ot(d*x+c)+((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2))*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(1-cos(d*x+c))^2*cs
c(d*x+c)^2+43*C*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*ln(csc(d*x+c)-cot(d*x+c)+((1-cos(d*x+c))^2*csc(d*x+c)^
2-1)^(1/2))*(1-cos(d*x+c))^2*csc(d*x+c)^2+80*B*arctanh(2^(1/2)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(-cot(d
*x+c)+csc(d*x+c)))*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*2^(1/2)+34*B*(1-cos(d*x+c))^3*csc(d*x+c)^3-32*C*arc
tanh(2^(1/2)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(-cot(d*x+c)+csc(d*x+c)))*((1-cos(d*x+c))^2*csc(d*x+c)^2-
1)^(1/2)*2^(1/2)-2*C*(1-cos(d*x+c))^3*csc(d*x+c)^3-115*B*ln(csc(d*x+c)-cot(d*x+c)+((1-cos(d*x+c))^2*csc(d*x+c)
^2-1)^(1/2))*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)+43*C*ln(csc(d*x+c)-cot(d*x+c)+((1-cos(d*x+c))^2*csc(d*x+c
)^2-1)^(1/2))*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)-53*B*(-cot(d*x+c)+csc(d*x+c))+13*C*(-cot(d*x+c)+csc(d*x+
c)))/((1-cos(d*x+c))^2*csc(d*x+c)^2+1)

Fricas [A] (verification not implemented)

none

Time = 4.62 (sec) , antiderivative size = 739, normalized size of antiderivative = 3.57 \[ \int \frac {\cos ^2(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx=\left [\frac {\sqrt {2} {\left ({\left (115 \, B - 43 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (115 \, B - 43 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (115 \, B - 43 \, C\right )} \cos \left (d x + c\right ) + 115 \, B - 43 \, C\right )} \sqrt {-a} \log \left (-\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 3 \, a \cos \left (d x + c\right )^{2} - 2 \, a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 32 \, {\left ({\left (5 \, B - 2 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (5 \, B - 2 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (5 \, B - 2 \, C\right )} \cos \left (d x + c\right ) + 5 \, B - 2 \, C\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 4 \, {\left (16 \, B \cos \left (d x + c\right )^{3} + 5 \, {\left (11 \, B - 3 \, C\right )} \cos \left (d x + c\right )^{2} + {\left (35 \, B - 11 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, -\frac {\sqrt {2} {\left ({\left (115 \, B - 43 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (115 \, B - 43 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (115 \, B - 43 \, C\right )} \cos \left (d x + c\right ) + 115 \, B - 43 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 32 \, {\left ({\left (5 \, B - 2 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (5 \, B - 2 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (5 \, B - 2 \, C\right )} \cos \left (d x + c\right ) + 5 \, B - 2 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 2 \, {\left (16 \, B \cos \left (d x + c\right )^{3} + 5 \, {\left (11 \, B - 3 \, C\right )} \cos \left (d x + c\right )^{2} + {\left (35 \, B - 11 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{32 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \]

[In]

integrate(cos(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[1/64*(sqrt(2)*((115*B - 43*C)*cos(d*x + c)^3 + 3*(115*B - 43*C)*cos(d*x + c)^2 + 3*(115*B - 43*C)*cos(d*x + c
) + 115*B - 43*C)*sqrt(-a)*log(-(2*sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d
*x + c) - 3*a*cos(d*x + c)^2 - 2*a*cos(d*x + c) + a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 32*((5*B - 2*C)*
cos(d*x + c)^3 + 3*(5*B - 2*C)*cos(d*x + c)^2 + 3*(5*B - 2*C)*cos(d*x + c) + 5*B - 2*C)*sqrt(-a)*log((2*a*cos(
d*x + c)^2 + 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a
)/(cos(d*x + c) + 1)) + 4*(16*B*cos(d*x + c)^3 + 5*(11*B - 3*C)*cos(d*x + c)^2 + (35*B - 11*C)*cos(d*x + c))*s
qrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*
cos(d*x + c) + a^3*d), -1/32*(sqrt(2)*((115*B - 43*C)*cos(d*x + c)^3 + 3*(115*B - 43*C)*cos(d*x + c)^2 + 3*(11
5*B - 43*C)*cos(d*x + c) + 115*B - 43*C)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*
x + c)/(sqrt(a)*sin(d*x + c))) - 32*((5*B - 2*C)*cos(d*x + c)^3 + 3*(5*B - 2*C)*cos(d*x + c)^2 + 3*(5*B - 2*C)
*cos(d*x + c) + 5*B - 2*C)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*
x + c))) - 2*(16*B*cos(d*x + c)^3 + 5*(11*B - 3*C)*cos(d*x + c)^2 + (35*B - 11*C)*cos(d*x + c))*sqrt((a*cos(d*
x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c)
+ a^3*d)]

Sympy [F]

\[ \int \frac {\cos ^2(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx=\int \frac {\left (B + C \sec {\left (c + d x \right )}\right ) \cos ^{2}{\left (c + d x \right )} \sec {\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate(cos(d*x+c)**2*(B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(5/2),x)

[Out]

Integral((B + C*sec(c + d*x))*cos(c + d*x)**2*sec(c + d*x)/(a*(sec(c + d*x) + 1))**(5/2), x)

Maxima [F]

\[ \int \frac {\cos ^2(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} \cos \left (d x + c\right )^{2}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(cos(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*cos(d*x + c)^2/(a*sec(d*x + c) + a)^(5/2), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 464 vs. \(2 (178) = 356\).

Time = 2.26 (sec) , antiderivative size = 464, normalized size of antiderivative = 2.24 \[ \int \frac {\cos ^2(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx=-\frac {2 \, \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} {\left (\frac {2 \, \sqrt {2} {\left (B a^{5} - C a^{5}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{a^{8} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} - \frac {\sqrt {2} {\left (21 \, B a^{5} - 13 \, C a^{5}\right )}}{a^{8} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \frac {\sqrt {2} {\left (115 \, B - 43 \, C\right )} \log \left ({\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2}\right )}{\sqrt {-a} a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} - \frac {32 \, {\left (5 \, B - 2 \, C\right )} \log \left (\frac {{\left | -562949953421312 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - 1125899906842624 \, \sqrt {2} {\left | a \right |} + 1688849860263936 \, a \right |}}{{\left | -562949953421312 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + 1125899906842624 \, \sqrt {2} {\left | a \right |} + 1688849860263936 \, a \right |}}\right )}{\sqrt {-a} a {\left | a \right |} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} - \frac {128 \, \sqrt {2} {\left (3 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} B - B a\right )}}{{\left ({\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} - 6 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} a + a^{2}\right )} \sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}}{64 \, d} \]

[In]

integrate(cos(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

-1/64*(2*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*(2*sqrt(2)*(B*a^5 - C*a^5)*tan(1/2*d*x + 1/2*c)^2/(a^8*sgn(cos(d*
x + c))) - sqrt(2)*(21*B*a^5 - 13*C*a^5)/(a^8*sgn(cos(d*x + c))))*tan(1/2*d*x + 1/2*c) + sqrt(2)*(115*B - 43*C
)*log((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2)/(sqrt(-a)*a^2*sgn(cos(d*x + c))
) - 32*(5*B - 2*C)*log(abs(-562949953421312*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 +
a))^2 - 1125899906842624*sqrt(2)*abs(a) + 1688849860263936*a)/abs(-562949953421312*(sqrt(-a)*tan(1/2*d*x + 1/2
*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + 1125899906842624*sqrt(2)*abs(a) + 1688849860263936*a))/(sqrt(-a
)*a*abs(a)*sgn(cos(d*x + c))) - 128*sqrt(2)*(3*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2
 + a))^2*B - B*a)/(((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(-a)*tan(
1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2)*sqrt(-a)*a*sgn(cos(d*x + c))))/d

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^2\,\left (\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

[In]

int((cos(c + d*x)^2*(B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^(5/2),x)

[Out]

int((cos(c + d*x)^2*(B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^(5/2), x)